Iterative boundary method for diffuse optical tomography.
نویسندگان
چکیده
The recent application of tomographic methods to three-dimensional imaging through tissue by use of light often requires modeling of geometrically complex diffuse-nondiffuse boundaries at the tissue-air interface. We have recently investigated analytical methods to model complex boundaries by means of the Kirchhoff approximation. We generalize this approach using an analytical approximation, the N-order diffuse-reflection boundary method, which considers higher orders of interaction between surface elements in an iterative manner. We present the general performance of the method and demonstrate that it can improve the accuracy in modeling complex boundaries compared with the Kirchhoff approximation in the cases of small diffuse volumes or low absorption. Our observations are also contrasted with exact solutions. We furthermore investigate optimal implementation parameters and show that a second-order approximation is appropriate for most in vivo investigations.
منابع مشابه
An Efficient Method for Model Reduction in Diffuse Optical Tomography
We present an efficient method for the reduction of model equations in the linearized diffuse optical tomography (DOT) problem. We first implement the maximum a posteriori (MAP) estimator and Tikhonov regularization, which are based on applying preconditioners to linear perturbation equations. For model reduction, the precondition is split into two parts: the principal components are consid...
متن کاملAnalysis and Regularization of Problems in Diffuse Optical Tomography
In this paper we consider the regularization of the inverse problem of diffuse optical tomography by standard regularization methods with quadratic penalty terms. We therefore investigate in detail the properties of the associated forward operators, and derive continuity and differentiability results, which are based on derivation of W 1,p regularity results for the governing elliptic boundary ...
متن کاملAnisotropic diffusion regularization methods for diffuse optical tomography using edge prior information
Diffuse optical tomography (DOT) is a non-invasive functional imaging modality that aims to image the optical properties of biological organs. The forward problem of the light propagation of DOT can be modelled as a diffusion process and is expressed as a differential diffusion equation with boundary conditions. The solution of the DOT inverse problem can be formulated as a minimization of some...
متن کاملElectrical Impedance Tomography (EIT) and Its Medical Applications: A Review
This paper reviews the principles of Electrical Impedance Tomography (EIT), different types of current patterns and reconstruction algorithms to assess its potential in medical imaging. A current injection pattern in EIT has its own current distribution profile within the subject under test. Hence, different current patterns have different sensitivity, spatial resolution and distinguishability....
متن کاملGauss-Newton method for image reconstruction in diffuse optical tomography.
We present a regularized Gauss-Newton method for solving the inverse problem of parameter reconstruction from boundary data in frequency-domain diffuse optical tomography. To avoid the explicit formation and inversion of the Hessian which is often prohibitively expensive in terms of memory resources and runtime for large-scale problems, we propose to solve the normal equation at each Newton ste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 20 6 شماره
صفحات -
تاریخ انتشار 2003